The Effect of Turbulent Pressure on the P-mode Frequencies in Stellar Models
نویسنده
چکیده
We have constructed models for the sun at three stages of its evolution: a zero-age main sequence model, the present sun, and a subgiant model. For each model, the turbulent pressure and turbulent kinetic energy were calculated from 3-d radiative hydrodynamical simulations (described in the poster by Robinson et al.), and inserted into the 1-d stellar models. We note that in these simulations, the turbulent pressure is not a free parameter, but can be computed from the resulting velocity field. We show the calculated p-mode frequencies for the model of the present sun, with and without turbulent pressure, and compare them to the observed solar frequencies. When the turbulent pressure is included in the models, the calculated frequencies are brought closer to the observed frequencies in the sun by up to two μHz, strictly from structural effects. The effect of including turbulent pressure on p-mode frequencies is also shown for the zero-age main sequence model. Our models also suggest that the importance of turbulent pressure increases as the star evolves into the subgiant region. We discuss the importance of also including realistic turbulence as well as radiation in the non-adiabatic calculation of oscillation frequencies.
منابع مشابه
Relativistic Stellar Models with Quadratic Equation of State
In this paper, we have obtained and presented new relativistic stellar configurations considering an anisotropic fluid distribution with a charge distribution and a gravitational potential Z(x) that depends on an adjustable parameter. The quadratic equation of state based on Feroze and Siddiqui viewpoint is used for the matter distribution. The new solutions can be written in terms of elementar...
متن کاملInclusion of Turbulence in Solar Modeling
The general consensus is that in order to reproduce the observed solar p-mode oscillation frequencies, turbulence should be included in solar models. However, until now there has not been any well-tested efficient method to incorporate turbulence into solar modeling. We present here two methods to include turbulence in solar modeling within the framework of the mixing length theory, using the t...
متن کاملNumerical simulation of turbulent compressible flows in a C-D nozzle with different divergence angles
Compressible gas flow inside a convergent-divergent nozzle and its exhaust plume atdifferent nozzle pressure ratios (NPR) have been numerically studied with severalturbulence models. The numerical results reveal that, the SST k–ω model give the bestresults compared with other models in time and accuracy. The effect of changes in value ofdivergence half-angle (ε ) on the nozzle performance, thru...
متن کاملNumerical study of influence of type of nanoparticles and volume fraction on turbulent heat transfer coefficient and pressure loss inter a tube
The conventional liquids have some limitations regarding the thermal properties. The nanoparticles addition is one of the techniques which can modify them. In this research, heat transfer coefficient (h) and pressure loss (Δp) of various nanofluids containing Al2O3, SiO2 and MgO nanoparticles dispersed in water in an annular tube with constant wall temperature were numerically considered. Accor...
متن کاملOscillations of the solar radial p - modes
We have calculated the radial non-adiabatic p-mode oscillations of the solar models. Based on a statistical theory of non-local convection, both the thermodynamic and kinetic couplings between convection and oscillations are finely treated. The turbulent pressure, turbulent viscosity, turbulent thermal flux and turbulent kinetic flux are all self-consistently included in the equations. The depa...
متن کامل